联系我们   Contact
搜索   Search

液压缸的主要参数

2015-11-6 15:19:19      点击:


液压缸有多种分类形式
1、按照结构特点分:活塞式、柱塞式和摆动式
 
2、按照作用方式分:单作用和双作用
单作用液压缸只能使活塞(或柱塞)做单方向运动,即压力只通向液压缸的一腔,而反方向运动则必须依靠外力(如弹簧离或自重等)来实现;双作用液压缸,在两个方向的运动都由压力油推动来实现。
 
3、按使用压力分
液压油缸对于液压机械来说是非常重要的一个部件,在整个液压机械中扮演一个执行元件的角色,整个过程中液压油缸就是把液压能转换成机械能。依据JIB-B8354规范,液压油缸依照使用压力可以分为下列规格。
主机类型 设计压力(Mpa)
低压液压缸 0~3.5MPa
中低压液压缸 0~7.0MPa
中压液压缸 7.0~14.0MPa
高压液压缸 14~21.0MPa
超高压液压缸 21MPa以上


国家标准GB/T7938-1987规定了液压缸公称压力系列

国家标准GB/T2349-1980规定了液压缸活塞行程系列
国家标准GB/T2348-1993规定了液压缸缸筒内径系列
国家标准GB/T2348-1993规定了液压缸缸筒外径系列
国家标准GB/T2348-1993规定了液压缸活塞杆螺纹形式和尺寸系列
 
1,缸筒内径D
可根据所要求的输出力F和液压系统的设定压力p及液压缸的机械效率ηm按表4-1的相关公式求出,但最后必须选用符合国家标准GB2348-1993的数值,以便选用标准产品及标准密封件
2,活塞杆直径d
活塞杆直径必须足够大以承受负载和缸所施加的应力。活塞杆受拉力时,活塞面积等于活塞力除以活塞杆屈服极限再乘以安全系数。但活塞杆受推力时,必须有足够的纵弯强度。当纵弯强度不够而产生较大的挠度时,由于滑动面的摩擦等引起导向套及活塞上有较大的偏载荷,造成卡阻、爬行、密封件异常磨损等问题。防止纵向弯曲所需的附加强度取决于行程及支点连接方式
3,行程S
缸的行程S取决于负载运动距离。行程较长时需要活塞杆较粗,可能还要在缸内装有止动套管,以提高抗纵弯能力
4,公称压力 P
 
5,缸速υ
缸速υ的确定与循环时间和缸的行程有关。一般推荐的速度范围是15~300mm/s。缸速过高将缩短密封的寿命。速度过低时还容易产生爬行现象,无法平稳地工作
6,油口直径d0
油口直径d0要根据缸速及活塞面积确定。油口流速不应超过5m/s,以免压力损失过大影响缸的输出力。


常用标准缸筒的尺寸及重量如下表,供您参考



如何计算液压缸承受的推力和拉力?

由力的计算公式可知: F = PS
(P:压强; S:受压面积)

从上面公式可以看出,由于油缸在作推动和拉动时受压面积不同,故所产生的力也是不同,即:
推力F1 = P×π(D/2)2 = P×π/4*D2
拉力F2 = P×π[(D/2)2-(d/2)2] = P×π/4* (D2-d2)
(φD:油缸内径;d: 活塞杆直径)
而在实际应用中,还需加上一个负荷率β。因为油缸所产生的力不会100%用于推或拉,β常选0.8,故公式变为:
推力F1 = 0.8×P×π/4×D2
拉力F2 = 0.8×P×π/4×(D2-d2)
从以上公式可以看出,只要知道油缸内径φD和活塞直径φd 以及压强P(一般为常数)就可以算出该型号油缸所能产生的力。
例如:
常用的标准柱型油压缸的P值均可耐压至140kgf/cm2,
假设:油缸内径D = 100mm活赛杆直径d = 56mm。注意直径的单位计算时需化为cm。
则:
推力F1 = P×πD2/4×0.8 = 140×π×102/4×0.8 ≈ 8796(kgf)
拉力F2 = P×π(D2-d2)/4×0.8 = 140×π(102-5.62)×0.8 ≈ 6037(kgf)


液压油缸的进出油口种类、油口尺寸对照表


液压油缸的油口种类、油口尺寸对照表如下,供您参考: